

Molten carbonate fuel cell

Consider a molten carbonate fuel cell (MCFC) with an active area of 0.5 m^2 and an electrolyte thickness of 1.5 mm.

At anode, it is fed with reformed natural gas, which is composed¹ by 50% H_2 , 30% H_2O , 10% CO_2 , and 10% of other gases (CO , CH_4 , and N_2). A mix of 70% air and 30% CO_2 is injected at cathode.

The MCFC is analysed under the following operating conditions:

637°C, 1 atm pressure, $\lambda_a = 2$ (air excess flow), 90% fuel utilization (H_2 -based), operating current density 250 mA/cm².

Under these conditions, the cell voltage amounts to 0.75 V and the specific conductivity of the electrolyte is $\sigma = 0.4 \text{ S/cm}$

Given these data and operating conditions, compute the:

1. Standard redox potential E^Θ ;
2. Redox potential at inlet E_{inlet} ;
3. Redox potential at outlet E_{outlet} ;
4. Ohmic loss at operating current density;
5. Non-ohmic (non-linear) voltage losses at operating current density;
6. Electrical power;
7. LHV-based electrical efficiency;
8. Amount of water (liquid) produced each day.

Useful information:

To simplify the analysis, it can be admitted that only H_2 is subject to the electrochemical oxidation. Indeed, the kinetics of the “water-gas-shift” and of the “methane-steam-reforming” chemical reactions is rather fast in comparison with the electrochemical oxidations of CO and CH_4 . Accounting also that the chemical equilibrium is displaced when H_2 is consumed, it leads that in presence of H_2O , CO and CH_4 are converted into H_2 and CO_2 .

It can be admitted for simplicity that the average redox potential is: $E = 0.5 (E_{\text{inlet}} + E_{\text{outlet}})$.

¹ Molar fractions. The actual composition of reformed NG depends on many parameters.